Sentence Dependency Tagging in Online Question Answering Forums
نویسندگان
چکیده
Online forums are becoming a popular resource in the state of the art question answering (QA) systems. Because of its nature as an online community, it contains more updated knowledge than other places. However, going through tedious and redundant posts to look for answers could be very time consuming. Most prior work focused on extracting only question answering sentences from user conversations. In this paper, we introduce the task of sentence dependency tagging. Finding dependency structure can not only help find answer quickly but also allow users to trace back how the answer is concluded through user conversations. We use linear-chain conditional random fields (CRF) for sentence type tagging, and a 2D CRF to label the dependency relation between sentences. Our experimental results show that our proposed approach performs well for sentence dependency tagging. This dependency information can benefit other tasks such as thread ranking and answer summarization in online forums.
منابع مشابه
An improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملWhich Answer is Best?: Predicting Accepted Answers in MOOC Forums
Massive Open Online Courses (MOOCs) have grown in reach and importance over the last few years, enabling a vast userbase to enroll in online courses. Besides watching videos, user participate in discussion forums to further their understanding of the course material. As in other communitybased question-answering communities, in many MOOC forums a user posting a question can mark the answer they...
متن کاملRelation Extraction for Open and Closed Domain Question Answering
One of the most accurate methods in Question Answering uses off-line information extraction to find answers for frequently asked questions. It requires automatic extraction from text of all relation instances for relations that users frequently ask for. In this chapter, we present two methods for learning relation instances for relations relevant in a closed and open domain (medical) question a...
متن کاملAutomatic Question Generation from Sentences
Question Generation (QG) and Question Answering (QA) are some of the many challenges for natural language understanding and interfaces. As humans need to ask good questions, the potential benefits from automated QG systems may assist them in meeting useful inquiry needs. In this paper, we consider an automatic Sentence-to-Question generation task, where given a sentence, the Question Generation...
متن کاملAnswer Presentation in Question Answering over Linked Data using Typed Dependency Subtree Patterns
In an era where highly accurate Question Answering (QA) systems are being built using complex Natural Language Processing (NLP) and Information Retrieval (IR) algorithms, presenting the acquired answer to the user akin to a human answer is also crucial. In this paper we present an answer presentation strategy by embedding the answer in a sentence which is developed by incorporating the linguist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012